Straight manifold type NGDP Manifold length (VL) 410-510 # **TECHNICAL DATA** ## **NGDP VL 410-510** | Manifold height (VH) | 46 mm | |----------------------|-----------------------| | Operating voltage | 230 V _{AC} * | | Manifold length (VL) | 410 | 460 | 510 | |-----------------------------------|------------|------------|-------------| | Control circuits | 2 | 2 | 2 | | Power (watts) per control circuit | 2 ×
850 | 2 ×
950 | 2 ×
1000 | ^{*}Volts alternating current PE protective conductor terminal 110.229 (2 m cable), incl. cylinder screw M4x6-12.9 #### **INSTALLATION** #### Nozzle tip view DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12 - S1 Largest pitch (max. pitch) - S2 Pitch between the nozzles (min./max. pitch) - S3 Pitch between the nozzles, taking connecting element and spacer into account (min./max. pitch) - 1 Screw connection close to manifold - 2 High-temperature insulation plate - (3) Heating connections - 4 Possible pin position - 5 Opening and plug location dependent upon nozzle type ### Design examples/Balancing | Туре | | Melt channel Ød
in mm | | |--------|------------|--------------------------|---| | NGDP1B | • d | ≥ 12 | 1 | | NGDP2B | • <u>d</u> | ≥ 12 | 2 | | NGDP4B | <u>d</u> | ≥ 12 | 4 | | NGDP6T | d | ≤ 8 | 6 | | NGDP8T | • <u>d</u> | ≥ 12 | 8 | B = balanced T = partially balanced Dimension "K" required for heat expansion is to be ensured by grinding the pressure pad (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | We reserve the right to make technical changes.