

Straight manifold type NGDP

Manifold length (VL) 410-510

TECHNICAL DATA

NGDP VL 410-510

Manifold height (VH)	46 mm
Operating voltage	230 V _{AC} *

Manifold length (VL)	410	460	510
Control circuits	2	2	2
Power (watts) per control circuit	2 × 850	2 × 950	2 × 1000

^{*}Volts alternating current

PE protective conductor terminal 110.229 (2 m cable), incl. cylinder screw M4x6-12.9

INSTALLATION

Nozzle tip view

DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12

- S1 Largest pitch (max. pitch)
- S2 Pitch between the nozzles (min./max. pitch)
- S3 Pitch between the nozzles, taking connecting element and spacer into account (min./max. pitch)
- 1 Screw connection close to manifold
- 2 High-temperature insulation plate
- (3) Heating connections
- 4 Possible pin position
- 5 Opening and plug location dependent upon nozzle type

Design examples/Balancing

Туре		Melt channel Ød in mm	
NGDP1B	• d	≥ 12	1
NGDP2B	• <u>d</u>	≥ 12	2
NGDP4B	<u>d</u>	≥ 12	4
NGDP6T	d	≤ 8	6
NGDP8T	• <u>d</u>	≥ 12	8

B = balanced T = partially balanced

Dimension "K" required for heat expansion is to be ensured by grinding the pressure pad (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

VH	ΔT (°C)	100	150	200	250	300	350
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264

We reserve the right to make technical changes.