Multi-drop hot runner nozzles ## 4.2 Multi-drop hot runner nozzles as system nozzles | | Page | |---|------| | OktaFlow® linear Multi-drop hot runner nozzle linear version for side gating | 20 | | OktaFlow® radial TK45 Multi-drop hot runner nozzle radial version for side gating | 30 | | OktaFlow® radial TK65 Multi-drop hot runner nozzle radial version for side gating | 40 | | 18LHF Multi-drop hot runner nozzle for side gating under 90 °, without cold slugs, with thick-film heating element (BlueFlow®) | 50 | | 22LHT Multi-drop hot runner nozzle for side gating under 90° , without cold slugs, with conventional heating element | 60 | | 26LHT Multi-drop hot runner nozzle for side gating under 90°, without cold slugs, with conventional heating element | 70 | 07/18 We reserve the right to make technical changes. 4.2.10 ## OktaFlow® linear Multi-drop hot runner nozzle linear version for side gating #### **TECHNICAL DATA** #### **80HT** Melt channel Ød 7.5 mm Operating voltage 230 V_{AC}* Nominal length of the nozzle (L) in mm 50 80 120 **•** • • #### **OLT45** Quantity of tips 4 or 8 Operating voltage 230 V_{AC}* Contact us for other nozzle lengths! *Volts alternating current available #### NOTE Power connector CMT and thermocouple connector CMLK are to be ordered separately. Tip distance for four tips Tip distance for eight tips #### **INSTALLATION** View B-B for fastening screw thread Gate point geometry The size "K" required for heat expansion is to be ensured by grinding the pressure pads (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 36 mm | K (mm) | 0.021 | 0.059 | 0.098 | 0.137 | 0.177 | 0.217 | | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | | 56 mm | K (mm) | 0.046 | 0.097 | 0.150 | 0.203 | 0.258 | 0.311 | Example Cutout for nozzle head, power and thermocouple plug connections $\label{lem:couple} \mbox{ View D-D cutout for power and thermocouple plug connections of the sub-manifold }$ ① Power and thermocouple plug connections in this area can only be bent once; minimum radius: R8 SW = flat area on nozzle head ## OktaFlow® radial TK45 Multi-drop hot runner nozzle radial version for side gating #### **TECHNICAL DATA** #### **80HT** Melt channel Ød 7.5 mm Operating voltage 230 V_{AC}* Nominal length of the nozzle (L) in mm 60 90 130 #### **ORT45** 1, 2, 4 or 8 **Quantity of tips** 230 V_{AC}* Operating voltage Contact us for other nozzle lengths! *Volts alternating current available #### NOTE Power connector CMT and thermocouple connector CMLK are to be ordered separately. 2 tips 4 tips 8 tips #### **INSTALLATION** #### Gate point geometry Example Cutout for nozzle head, power and thermocouple plug connections View D-D cutout for power and thermocouple plug connections of the sub-manifold The size "K" required for heat expansion is to be ensured by grinding the pressure pads (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 36 mm | K (mm) | 0.021 | 0.059 | 0.098 | 0.137 | 0.177 | 0.217 | | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | | 56 mm | K (mm) | 0.046 | 0.097 | 0.150 | 0.203 | 0.258 | 0.311 | ① Power and thermocouple plug connections in this area can only be bent once; minimum radius: R8 SW = flat area on nozzle head ## OktaFlow® radial TK65 Multi-drop hot runner nozzle radial version for side gating #### **TECHNICAL DATA** #### **80HT** Melt channel Ød 7.5 mm Operating voltage 230 V_{AC}* Nominal length of the nozzle (L) in mm 65 95 135 ■ ■ ■ #### ORT65 Quantity of tips 1, 2, 4 or 8 Operating voltage $230 \, V_{AC}^*$ #### Contact us for other nozzle lengths! *Volts alternating current available #### NOTE Power connector CMT and thermocouple connector CMLK are to be ordered separately. View B-B Fastening screw thread and tip distance Gate point geometry Example Cutout for nozzle head, power and thermocouple plug connections View D-D cutout for power and thermocouple plug connections of the sub-manifold The size "K" required for heat expansion is to be ensured by grinding the pressure pads (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 36 mm | K (mm) | 0.021 | 0.059 | 0.098 | 0.137 | 0.177 | 0.217 | | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | | 56 mm | K (mm) | 0.046 | 0.097 | 0.150 | 0.203 | 0.258 | 0.311 | ① Power and thermocouple plug connections in this area can only be bent once; minimum radius: R8 SW = flat area on nozzle head ## 18LHF Multi-drop hot runner nozzle for side gating under 90°, without cold slugs, with thick-film heating element (BlueFlow®) ## TECHNICAL DATA 18LHF Melt channel Ød 3.8 mm Operating voltage 230 V_{AC}* Quantity of tips 1, 2 or 4 Nominal length of the nozzle (L) in mm 60 80 100 #### NOTE available *Volts alternating current Power connector CHF and thermocouple connector CMLK are to be ordered separately. BlueFlow® hot runner nozzle type 18LHF is not intended for sale or use in the USA or Canada! View D-D for two nozzle tips View D-D for four nozzle tips Ø 18.5 *0.4 View E-E for two nozzle tips View E-E for four nozzle tips The size "K" required for heat expansion is to be ensured by grinding the pressure pads (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the clamping plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 36 mm | K (mm) | 0.021 | 0.059 | 0.098 | 0.137 | 0.177 | 0.217 | | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | | 56 mm | K (mm) | 0.046 | 0.097 | 0.150 | 0.203 | 0.258 | 0.311 | Example cutout for nozzle head, power and thermocouple plug connections $% \left(1\right) =\left(1\right) \left(\left($ ① Thermocouple plug connection in this area can only be bent once; minimum radius: R8 SW = flat area on nozzle head To prevent open jet formations, injection should be carried out against a core, for example. Turning prevention ### **22LHT** Multi-drop hot runner nozzle for side gating under 90°, without cold slugs, with conventional heating element # TECHNICAL DATA 22LHT Melt channel Ød 4.8 mm Quantity of tips 1, 2 or 4 Operating voltage 230 V_{AC}* Nominal length of the nozzle (L) in mm 60 80 100 *Volts alternating current available #### **NOTE** Power connector CMT and thermocouple connector CMLK are to be ordered separately. View D-D for two nozzle tips View D-D for four nozzle tips The size "K" required for heat expansion is to be ensured by grinding the pressure pads (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the clamping plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 36 mm | K (mm) | 0.021 | 0.059 | 0.098 | 0.137 | 0.177 | 0.217 | | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | | 56 mm | K (mm) | 0.046 | 0.097 | 0.150 | 0.203 | 0.258 | 0.311 | ① Thermocouple plug connection in this area can only be bent once; minimum radius: R8 SW = flat area on nozzle head To prevent open jet formations, injection should be carried out against a core, for example. Turning prevention ## **26LHT** Multi-drop hot runner nozzle for side gating under 90°, without cold slugs, with conventional heating element # TECHNICAL DATA 26LHT Melt channel Ød 6.0 mm Quantity of tips 1, 2 or 4 Operating voltage 230 V_{AC}* Nominal length of the nozzle (L) in mm 60 80 100 *Volts alternating current available #### **NOTE** Power connector CMT and thermocouple connector CMLK are to be ordered separately. #### **INSTALLATION** View D-D for two nozzle tips Ø 26.5 View D-D for four nozzle tips View E-E for two nozzle tips View E-E for four nozzle tips 1 Power and thermocouple plug connections in this area can only be bent once; minimum radius: R8 SW = flat area on nozzle head The size "K" required for heat expansion is to be ensured by grinding the pressure pads (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the clamping plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 36 mm | K (mm) | 0.021 | 0.059 | 0.098 | 0.137 | 0.177 | 0.217 | | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | | 56 mm | K (mm) | 0.046 | 0.097 | 0.150 | 0.203 | 0.258 | 0.311 | To prevent open jet formations, injection should be carried out against a core, for example. Turning prevention