

Manifold systems

Different manifold versions can be selected for different applications, from partially or fully balanced to customer-specific special solutions. Flexible positioning of hot runner nozzles with a manifold make individualised mould design possible.

HOMOGENEOUS TEMPERATURE MANAGEMENT THANKS TO PRESSED-IN HEATERS

All melt-conducting components are heated externally, which ensures optimum plastic flow with the smallest possible pressure loss. Pressed-in heaters on both sides guarantee optimum heat transfer to the manifold block. This results in homogeneous temperature distribution.

PROTECTED POWER PLUG CONNECTIONS – HIGHLY MAINTENANCE FRIENDLY

Steel and ceramic sleeves protect the power connections from damage. Mechanical cleaning of the manifold channels is easy and fast. Cleaning in the fluid bed bath and oven is also possible. The model data in the CADHOC® System Designer library can be configured (and are thus quickly available) for both individual and standard manifolds.

CADHOC® SYSTEM DESIGNER – TOP-NOTCH SOFTWARE PROVIDED FOR YOUR SUPPORT

CADHOC® System Designer enables us to meet your needs for fast provision of product data on everything from individual components to complete hot runner systems, including negative volume.

Among other things, CADHOC® System Designer enables you to:

- Design nozzle sizes in an optimum way
- Select plastic types from a comprehensive list
- Make a direct configuration without any specifications of the processing parameters
- Make an application-based configuration with specifications of the processing parameters

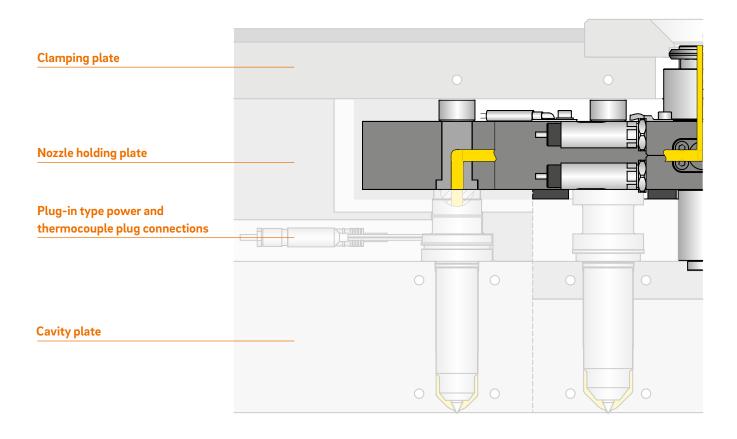
3D CAD models on every hot runner system are available for download in a variety of different data formats. After entering your configuration parameters, you will receive an email with a link to the product data of the configured hot runner system.

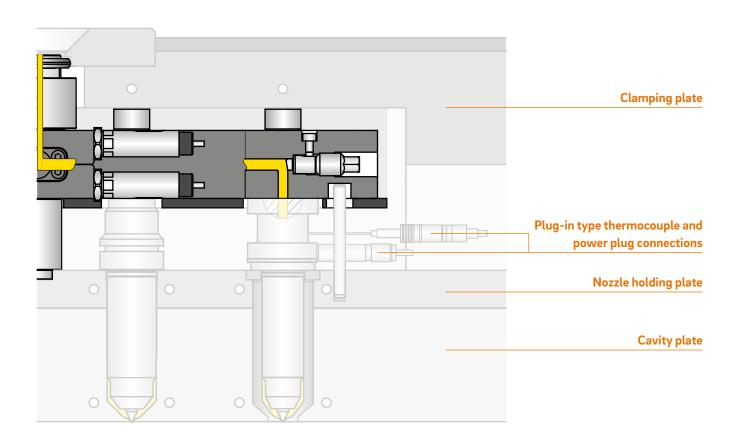
RAPID SYSTEMS FROM GÜNTHER

Rapid systems and BlueFlow® nozzles are stored in the CADHOC® System Designer library and are quickly accessible. They enable you as a registered user to configure your rapid system in a very short period of time. You can immediately download all relevant 3D data – including negative volume and price information – quickly, easily and securely. Information on our rapid systems can be found **starting on Page 2.4.140**.

THE ADVANTAGES AT A GLANCE

- Homogeneous temperature distribution
- Variable nozzle positions
- Power connections with external damage protection
- Easy and fast cleaning
- Model data is stored in the CADHOC® online library


2.4 Hot runner manifolds/Rapid systems


Manifolds		Page
STRAIGHT MANI	GCP	30
	Manifold length (VL) 160-360	
	GCP Manifold length (VL) 410-510	40
	GDP Manifold length (VL) 160-360	50
	GDP Manifold length (VL) 410-510	60
H-MANIFOLDS	HCP/HDP/HEP	70
CROSS MANIFOL	DS	
	KCP4/KDP4 Manifold length (VL) 135-165	80
	KCP4/KDP4 Manifold length (VL) 180	90
	KCP4/KDP4 Manifold length (VL) 210	100
38	KCP4/KDP4 Manifold length (VL) 240/270/300	110
STAR MANIFOLD	SCP/SDP/SEP	120
T-MANIFOLDS	TCP/TDP/TEP	130
Rapid syste	ems	
	Rapid systems Configuration in CADHOC® System Designer	140

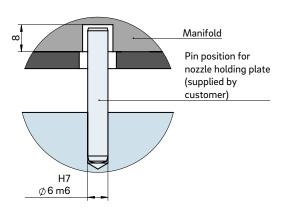
Overview of overall design

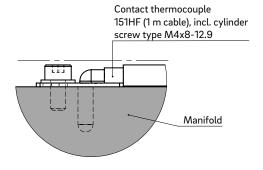
Hot runner manifold

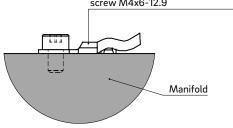
We reserve the right to make technical changes.

Straight manifold type GCP

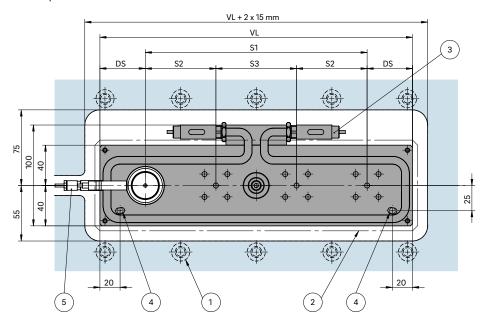
Manifold length (VL) 160-360

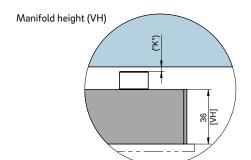

TECHNICAL DATA


GCP VL 160-360


Manifold height	36 mm				
Operating voltage	230 V _{AC} *				
Manifold length (VL)	160	210	260	310	360
Control circuits	1	1	1	1	1
Power (watts) per control	2 × 750		2 × 1000		

^{*}Volts alternating current





Nozzle tip view

- Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8
- S1 Largest pitch (max. pitch)
- S2 Pitch between the nozzles (min./max. pitch)
- S3 Pitch between the nozzles, taking connecting element and spacer into account (min./max. pitch)
- ① Screw connection close to manifold
- ② High-temperature insulation plate ③ Heating connections
- 4 Possible pin position
- 5 Opening and plug location dependent upon nozzle type

Design examples/Balancing

Туре		Melt channel Ød in mm	Number of drops
GCP1B	• d	≤ 10	1
GCP2B	• <u>d</u>	≤ 10	2
GCP3-	• d	≤ 10	3
GCP4B	•—•	≤ 8	4
GCP8T	• d	≤ 8	8

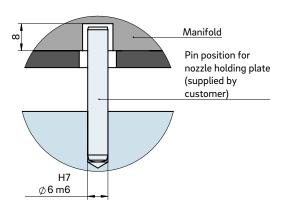
B = balanced T = partially balanced - = not balanced

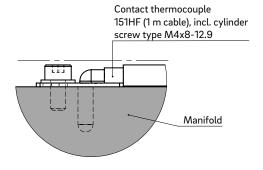
Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

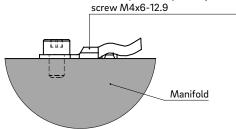
VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217

Straight manifold type GCP

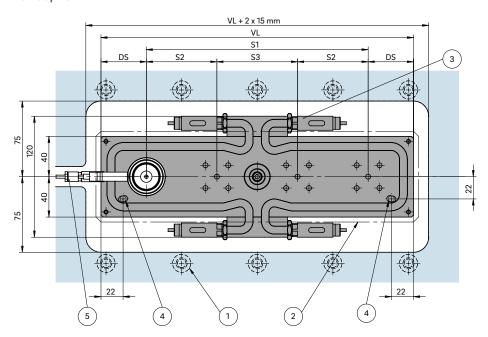
Manifold length (VL) 410-510

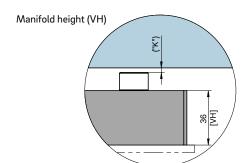

TECHNICAL DATA


GCP VL 410-510


Manifold height (VH) 36 mr	36 mm			
Operating voltage	230 V	230 V _{AC} *			
Manifold length (VL)	410	410 460 510			
Control circuits	2	2	2		
Power (watts) per control circuit	2 × 850	2 × 950	2 × 1000		

^{*}Volts alternating current





Nozzle tip view

- DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8
- S1 Largest pitch (max. pitch)
- S2 Pitch between the nozzles (min./max. pitch)
- S3 Pitch between the nozzles, taking connecting element and spacer into account (min./max. pitch)
- ① Screw connection close to manifold
- $\widehat{\mathbb{Q}}$ High-temperature insulation plate
- (3) Heating connections
- 4 Possible pin position
- (5) Opening and plug location dependent upon nozzle type

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

	ı			ı	ı		ı
VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217

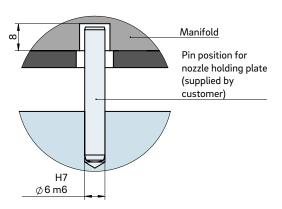
Design examples/Balancing

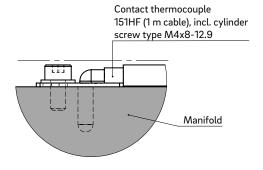
Туре		Melt channel Ød in mm	Number of drops
GCP1B	• d	≤ 10	1
GCP2B	• d	≤ 10	2
GCP3-	• d	≤ 10	3
GCP4B	•d	≤ 8	4
GCP6T	d • • • •	≤ 8	6
GCP8T	•d	≤ 8	8

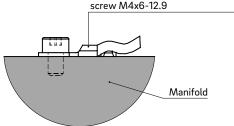
B = balanced T = partially balanced - = not balanced

Straight manifold type GDP

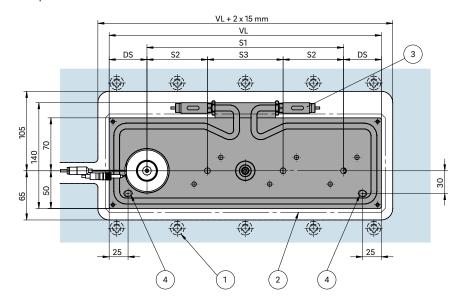
Manifold length (VL) 160-360

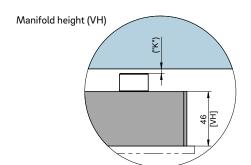

TECHNICAL DATA


GDP VL 160-360


Manifold height	46 mm				
Operating voltage	230 V _{AC} *				
Manifold length	160	210	260	310	360
Control circuits	1	1	1	1	1
Power (watts) per control circuit	2 × 750		2 × 1000		

^{*}Volts alternating current





Nozzle tip view

DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12

- S1 Largest pitch (max. pitch)
- S2 Pitch between the nozzles (min./max. pitch)
- S3 Pitch between the nozzles, taking connecting element and spacer into account (min./max. pitch)
- ① Screw connection close to manifold
- ② High-temperature insulation plate
- (3) Heating connections
- 4 Possible pin position
- (5) Opening and plug location dependent upon nozzle type

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

	ΔT (°C)						
VH	ΔT (°C)	100	150	200	250	300	350
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264

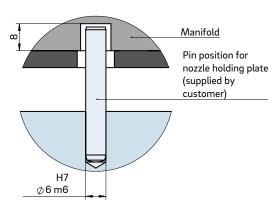
Design examples/Balancing

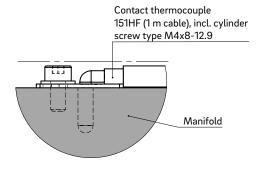
Туре		Melt channel Ød in mm	Number of drops
GDP1B	• d	≥ 12 to 16	1
GDP2B	• d	≥ 12 to 16	2
GDP3-	• d	≥ 12 to 16	3
GDP3T	• d	≤ 6	3
GDP4B	d	≤ 12 to 16	4
GDP6T	d	≤ 8	6

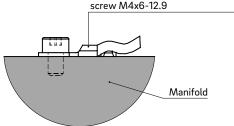
B = balanced T = partially balanced - = not balanced

Straight manifold type GDP

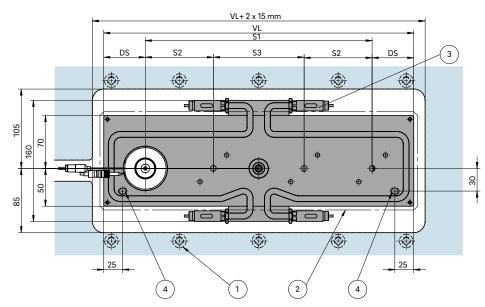
Manifold length (VL) 410-510

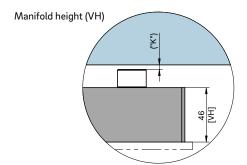

TECHNICAL DATA


GDP VL 410-510


Manifold height (VH) 46 mr	46 mm			
Operating voltage	230 V	230 V _{AC} *			
Manifold length (VL)	410	410 460 510			
Control circuits	2	2	2		
Power (watts) per control circuit	2 × 850	2 × 950	2 × 1000		

^{*}Volts alternating current





Nozzle tip view

- DS Edge distance: a. min. 35.0 with nozzle size \leq 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size \geq 12
- S1 Largest pitch (max. pitch)
- S2 Pitch between the nozzles (min./max. pitch)
- S3 Pitch between the nozzles, taking connecting element and spacer into account (min./max. pitch)
- ① Screw connection close to manifold
- ② High-temperature insulation plate
- 3 Heating connections
- 4 Possible pin position
- (5) Opening and plug location dependent upon nozzle type

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

VH	ΔT (°C)	100	150	200	250	300	350
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264

Design examples/Balancing

Туре		Melt channel Ød in mm	Number of drops
GDP1B	• d	≥ 12 to 16	1
GDP2B	• d	≥ 12 to 16	2
GDP3-	• d	≥ 12 to 16	3
GDP3T	• d	≤ 6	3
GDP4B	d	≥ 12 to 16	4
GDP6T	d • • • •	≤ 8	6
GDP8T	• <u>d</u>	≥ 12 to 16	8

B = balanced T = partially balanced - = not balanced

H-manifold type HCP/HDP/HEP

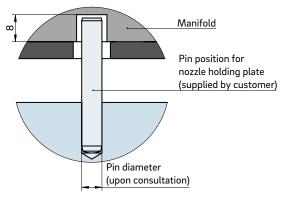
TECHNICAL DATA

HCP/HDP/HEP

Manifold height (VH) HCP: 36 mm

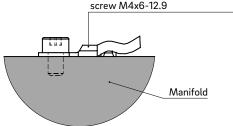
HDP: 46 mm **HEP:** 56 mm

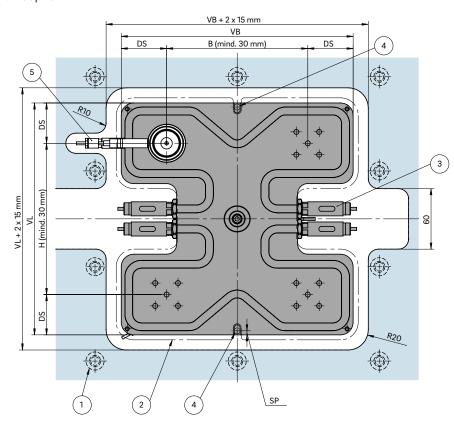
Operating voltage 230 V_{AC}*


 $\textbf{Manifold length (VL)} \quad \text{H} + 2 \times \text{DS}$

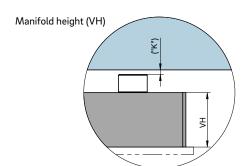
Manifold width (VB) $B + 2 \times DS$

The heating output of each control circuit is calculated individually.


*Volts alternating current


Contact thermocouple
151HF (1 m cable), incl. cylinder
screw type M4x8-12.9

Manifold



Nozzle tip view

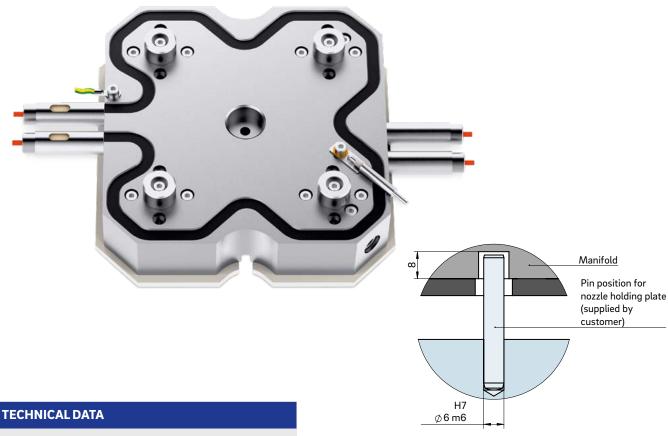
DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12

- H Pitch between the nozzles
- B Pitch between the nozzles
- 1 Screw connection close to manifold
- 2 High-temperature insulation plate
- 3 Heating connections
- Possible pin position
 "SP" = d/2 + 1 mm
- (5) Opening and plug location dependent upon nozzle type

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264
56 mm	K (mm)	0.046	0.097	0.150	0.203	0.258	0.311

Design examples/Balancing


Туре		HCP = 36 (VH) Melt channel Ød in mm	HDP = 46 (VH) Melt channel Ød in mm	HEP = 56 (VH) Melt channel Ød in mm	Num- ber of drops
H_P4B	d	≤ 10	≥ 12 to 16	> 16	4
H_P6T	d	≤ 10	≥ 12 to 16	> 16	6
H_P6B	d		≤ 8	≤ 10	6
H_P8B	d	≤ 10	≥ 12 to 16	> 16	8
H_P12B	d		≤ 8	≤ 10	12
H_P16B	d)	≤ 10	≥ 12 to 16	> 16	16

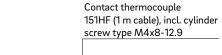
B = balanced T = partially balanced

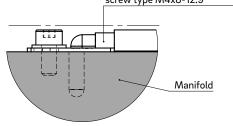
Cross manifold type KCP4/KDP4

Manifold length (VL) 135-165

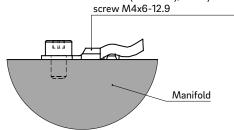
KCP4/KDP4 135/165

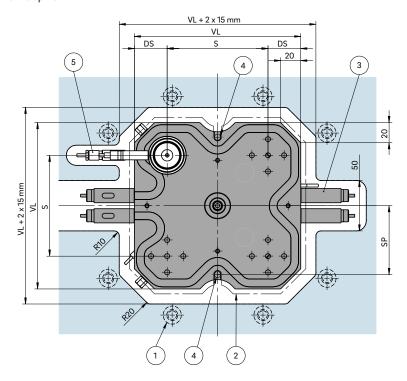
Manifold height (VH) KCP: 36 mm


KDP: 46 mm

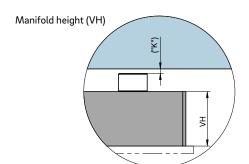

Operating voltage $230 \, V_{AC}^{*}$

Manifold length (VL)	135	165
Pin position (SP)	63.5	68.0
Control circuits	1	1
Power (watts) per control circuit	2 × 850	2 × 1000


^{*}Volts alternating current



PE protective conductor terminal 110.229 (2 m cable), incl. cylinder


Nozzle tip view

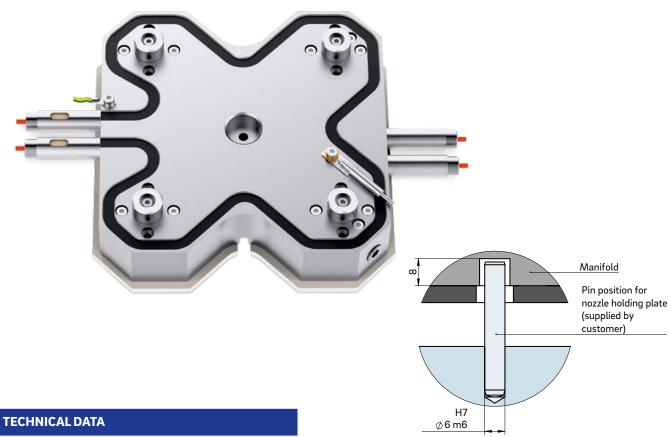
DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12

S Pitch between the nozzles

- ① Screw connection close to manifold
- 2 High-temperature insulation plate
- (3) Heating connections
- 4 Possible pin position5 Opening and plug location dependent upon nozzle type

Design examples/Balancing

Туре		KCP = 36 (VH) Melt channel Ød in mm	KDP = 46 (VH) Melt channel Ød in mm	Number of drops
K D4D		≤ 10	≥ 12 to 16	
K_P4B	DS min. 35	DS min. 50	4	
B = balanced				

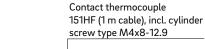

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

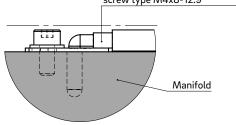
VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264

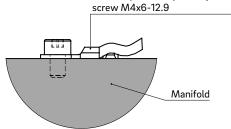
Cross manifold type KCP4/KDP4

Manifold length (VL) 180

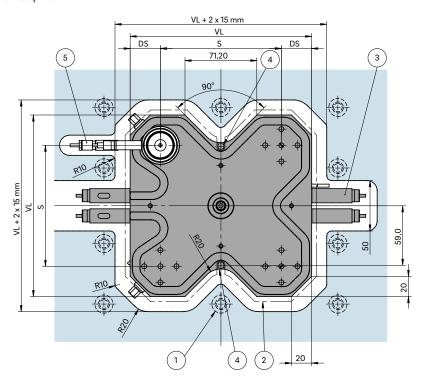
KCP4/KDP4180


Manifold height (VH) KCP: 36 mm **KDP:** 46 mm


Operating voltage $230 \, V_{AC}^{*}$


Manifold length (VL)	180
Pin position (SP)	59.0
Control circuits	1
Power (watts) per control circuit	2 × 1000

^{*}Volts alternating current



Nozzle tip view

Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12

Pitch between the nozzles

- 3 Heating connections
- 4 Possible pin position5 Opening and plug location dependent upon nozzle type

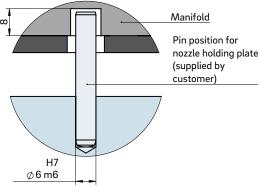
Manifold height (VH) (]K

Design examples/Balancing

B = balanced

Туре		KCP = 36 (VH) Melt channel Ød in mm	KDP = 46 (VH) Melt channel Ød in mm	Number of drops
K DAD	d	≤ 10	≥ 12 to 16	4
K_P4B	a O	DS min. 35	DS min. 50	4

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

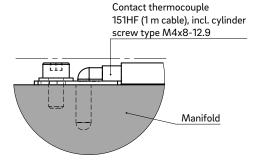

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264

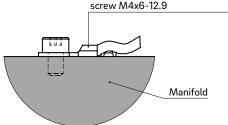
Cross manifold type KCP4/KDP4

Manifold length (VL) 210

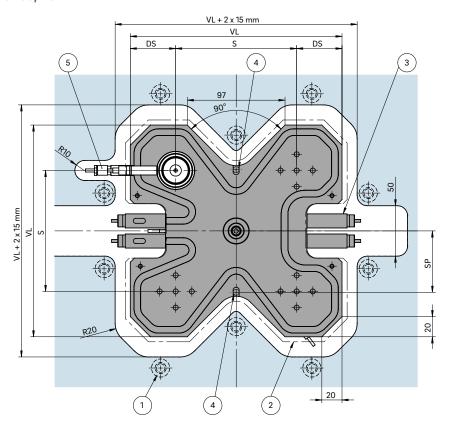
TECHNICAL DATA

KCP4/KDP4210

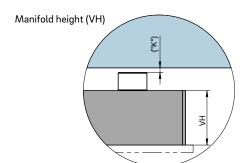

Manifold height (VH) KCP: 36 mm KDP: 46 mm


Operating voltage $230 \, V_{AC}^*$

Manifold length (VL)	210
Pin position (SP)	60.8
Control circuits	1
Power (watts)	2 ×
per control circuit	1000


^{*}Volts alternating current

Nozzle tip view



DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12

S Pitch between the nozzles

- ① Screw connection close to manifold
- ② High-temperature insulation plate
 ③ Heating connections

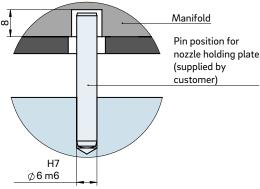
- 4 Possible pin position5 Opening and plug location dependent upon nozzle type

Design examples/Balancing

Туре	WCP = 36 (VH) Melt channel Ød in mm		KDP = 46 (VH) Melt channel Ød in mm	Number of drops
K DAD	d	≤ 10	≥ 12 to 16	4
K_P4B	d ()	DS min. 35	DS min. 50	4

B = balanced

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

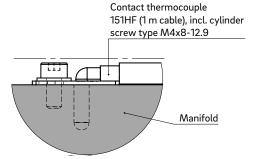

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264

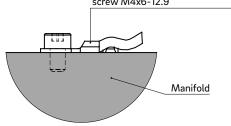
Cross manifold type KCP4/KDP4

Manifold length (VL) 240/270/300

TECHNICAL DATA

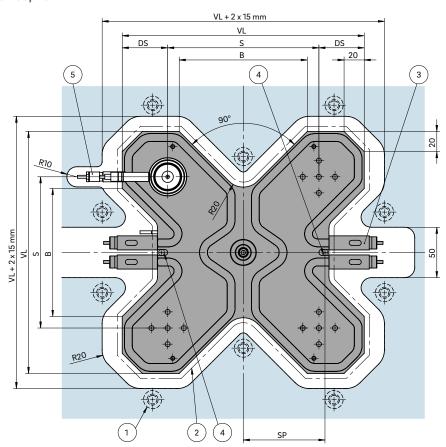
KCP4/KDP4 240/270/300


Manifold height (VH) KCP: 36 mm KDP: 46 mm


Operating voltage 230 V_{AC}*

Manifold length (VL)	240	270	300
Pin position (SP)	81.0	87.5	101.0
Dimension B	127.0	156.6	187.0
Control circuits	2	2	2
Power (watts) per control circuit	2 × 1000	2 × 1350	2 × 1500

 $[\]hbox{*Volts alternating current}\\$



Nozzle tip view

DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10c. min. 50.0 with nozzle size ≥ 12

Pitch between the nozzles

- ① Screw connection close to manifold
- 2 High-temperature insulation plate
 3 Heating connections
 4 Possible pin position
- 5 Opening and plug location dependent upon nozzle type

Manifold height (VH) ("K")

Design examples/Balancing

B = balanced


Туре		KCP = 36 (VH) Melt channel Ød in mm	KDP = 46 (VH) Melt channel Ød in mm	Number of drops
K_P4B	4	≤ 10	≥ 12 to 16	4
	d	DS min. 35	DS min. 50	4

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264

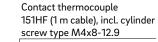
Star manifold type SCP/SDP/SEP

TECHNICAL DATA

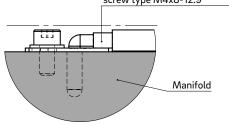
SCP/SDP/SEP

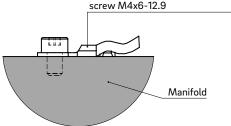
Manifold height (VH) SCP: 36 mm

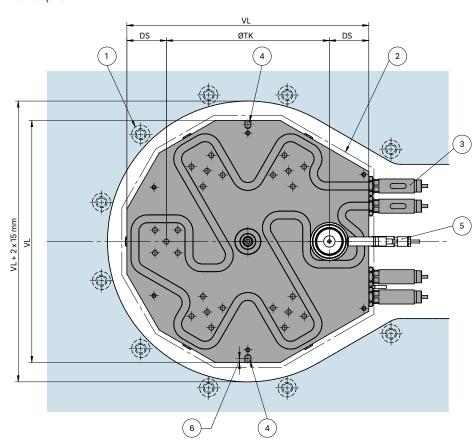
SDP: 46 mm **SEP:** 56 mm


Operating voltage 230 V_{AC}*

Manifold length (VL) $ØTK + 2 \times DS$


The heating output of each control circuit is calculated individually.


*Volts alternating current


(upon consultation)

Nozzle tip view

DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12

ØTK Pitch circle diameter

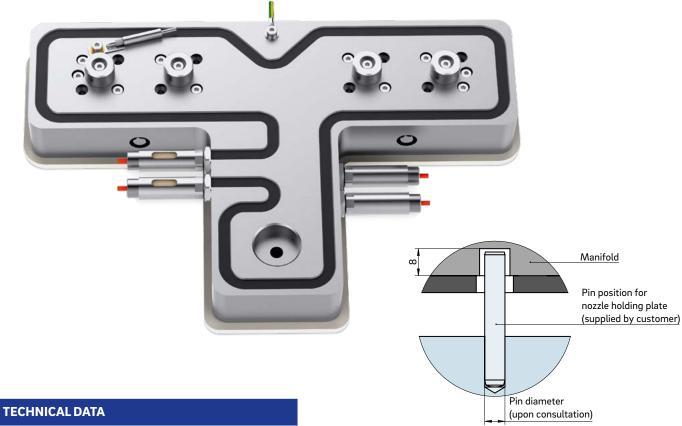
- ① Screw connection close to manifold
- ② High-temperature insulation plate ③ Heating connections
- 4 Possible pin position
- 5 Opening and plug location dependent upon nozzle type

Manifold height (VH) (]K

Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264
56 mm	K (mm)	0.046	0.097	0.150	0.203	0.258	0.311

Design examples/Balancing


Туре		SCP = 36 (VH) Melt channel Ød in mm	SDP = 46 (VH) Melt channel Ød in mm	SEP = 56 (VH) Melt channel Ød in mm	Number of drops
S_P3B	d	≤ 10	≥ 12 to 16	≥ 16	3
S_P6B	d		≤ 8	≤ 10	6
S_P8B	d		≤ 8	≤ 10	8

B = balanced

2.4.120 We reserve the right to make technical changes.

T-manifold type TCP/TDP/TEP

TCP/TDP/TEP

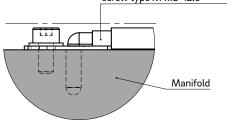
Manifold height (VH) TCP: 36 mm

TDP: 46 mm

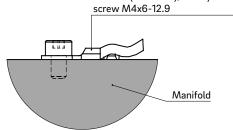
TEP: 56 mm

 $230 \, V_{AC}^{*}$ Operating voltage

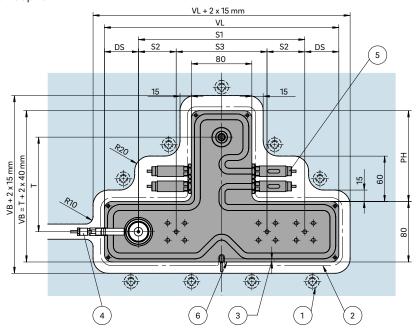
Manifold length (VL) $S1 + 2 \times DS$


Manifold width (VB) $T + 2 \times 40 \text{ mm}$

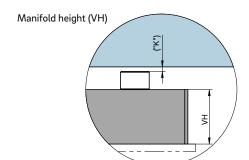
The heating output of each control circuit is calculated individually.


*Volts alternating current

Contact thermocouple 151HF (1 m cable), incl. cylinder screw type M4x8-12.9



PE protective conductor terminal 110.229 (2 m cable), incl. cylinder



Nozzle tip view

DS Edge distance: a. min. 35.0 with nozzle size \leq 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size \geq 12

- T Distance from the connecting nozzle to the nozzle row
- ① Screw connection close to manifold
- (2) High-temperature insulation plate
- 3 Heating connections
- 4 Possible pin position "SP" = d/2 + 1 mm
- (5) Opening and plug location dependent upon nozzle type

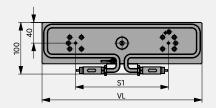
Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0.021	0.059	0.098	0.137	0.177	0.217
46 mm	K (mm)	0.033	0.078	0.124	0.170	0.218	0.264
56 mm	K (mm)	0.046	0.097	0.150	0.203	0.258	0.311

Design examples/Balancing

	· · · · · · · · · · · · · · · · · · ·				
Туре		TCP = 36 (VH) Melt channel dia in mm	TDP = 46 (VH) Melt channel dia in mm	TEP = 56 (VH) Melt channel dia in mm	Num- ber of drops
T_P2B	d)	≤ 10	≥ 12 to 16	> 16	2
T_P4-	d	≤ 10	≥ 12 to 16	> 16	4
T_P4B	d	≤ 10	≥ 12 to 16	> 16	4
T_P6T	d	≤ 10	≥ 12 to 16	> 16	6
T_P8T	d	≤ 10	≥ 12 to 16	> 16	8

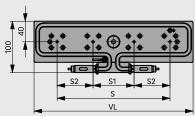
B = balanced T = partially balanced - = not balanced



Rapid systems

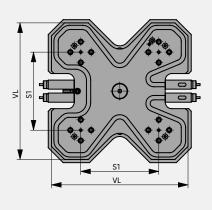
Fully configured hot runner system comprised of manifolds, nozzles and accessories Delivery time: 2 business weeks.

GCP2 SERIES



Length (VL)	Pitch (S1 mm) for nozzle type SHF/SMT	Pitch (S1 mm) for nozzle type SHT
160	≥ 58 to 90 (SMT)	
160	≥ 67 to 90 (SHF)	
210	> 90 to 140	> 90 to 120
260	> 140 to 190	> 120 to 170
310	> 190 to 240	> 170 to 220
360	> 240 to 290	> 220 to 270

GCP4B SERIES



S = total (min. to max.) mm
≥ 130 to 190 (SMT)
≥ 145 to 190 (SHF)
> 190 to 240
> 240 to 290

KCP4 SERIES

Length (VL)	S1 mm
135	≥ 44 to 65 (SMT)
135	≥ 47 to 65 (SHF)
165	> 65 to 95
180	> 95 to 110
210	> 110 to 140
240	> 140 to 170

NOZZLE TYPE SHF¹

Melt channel -Ø (mm)/ Nozzle length (L mm)

4.8 / 50, 60, 80, 100 6 / 50, 60, 80

Melt channel -Ø (mm)/

Nozzle length (L mm)

4.8 / 50, 60, 80, 100

6 / 50, 60, 80

Smallest pitch S1 ≥ 67 Smallest pitch S2 ≥ 39

Smallest pitch S1 ≥ 67

NOZZLE TYPE SHT

Melt channel -Ø (mm) / Nozzle length (L mm)

7.5 / 60, 80, 100

Smallest pitch S1 ≥ 90 Connection piece typ AK10 or AKV10/40

NOZZLE TYPE SMT

Melt channel -Ø (mm) / Nozzle length (L mm)

3.8 / 50, 60, 80, 100 4.8 / 50, 60, 80, 100 6 / 50, 80

Smallest pitch S1 Melt channel-Ø 3.8 = S1 ≥ 58 Melt channel-Ø 4.8 = S1 ≥ 62 Melt channel-Ø 6 = S1 ≥ 63

Melt channel -Ø (mm)/ Nozzle length (L mm)

3.8 / 50, 60, 80, 100 4.8 / 50, 60, 80, 100 6 / 50, 80

Smallest pitch S1 Melt channel-Ø $3.8 = S1 \ge 58$ Melt channel-Ø $4.8 = S1 \ge 62$ Melt channel-Ø $6 = S1 \ge 63$ Smallest pitch S2 Melt channel-Ø $3.8 = S2 \ge 30$ Melt channel-Ø $4.8 = S2 \ge 32$

Melt channel -Ø (mm)/ Nozzle length (L mm)

Melt channel- \emptyset 6 = S2 \ge 35

3.8 / 50, 60, 80, 100 4.8 / 50, 60, 80, 100

6 / 50,80

Smallest pitch S1 Melt channel-Ø 3.8 = S1 ≥ 44 Melt channel-Ø 4.8 = S1 ≥ 44 Melt channel-Ø 6 = S1 ≥ 45

RAPID SYSTEM

Comprised of:

- 1 Connection piece type AKV6/40, AKV8/40, AK10, AKV10/40 incl. titanium ring
- 2/4 Pressure piece
- Manifold insulation plate optional
- 1 Contact thermocouple 151 HF
- 2/4 Nozzle type SHF, SHT, SMT
- 2/4 Power connector CHF (SHF), CMT (SHT), permanent power connection (SMT)
- 2/4 Thermocouple connector CMLK (SHF, SHT), permanent thermocouple plug connection (SMT)
- 1 Spacer

Cylinder pin for turning prevention is not included in the scope of supply.

ORDER

Please use the enquiry fax template on the following page.

BlueFlow® hot runner nozzle type SHF is not intended for sale or use in the USA or Canada!

Melt channel -Ø (mm) / Nozzle length (L mm)

4.8 / 50, 60, 80, 100 6 / 50, 60, 80

Smallest pitch S1 ≥ 47

Enquiry fax number: +49 6451 5008-59

Rapid system ap	puc	ation inforr	nation	
CUSTOMER INFORMATION				
Customer number:	Conta	ct partner:	End customer:	
Company:	Teleph	none:	Target date:	
Street:	E-mai	l:	Other information:	
City and post code:	Date:			
REQUIRED INFORMATION ON THE A	APPLICATI	ON		
Item designation				
Industry		Car Electronics Consumer goods	☐ Packaging ☐ Medical technology	
Material designation (trade name)				

REQUIRED INFORMATION ON THE MOULD

Shot weight per hot runner nozzle (g)

Type of gating (direct or indirect)

Wall thickness (mm)

Series	☐GCP2	☐ GCP4B	☐KCP4	
Manifold length	VL	mm		
Melt channel Ø	☐ 3.8 mm	4.8 mm	☐ 6 mm	☐ 7.5 mm
Nozzle type	SHF	SHT	SMT	
Nozzle length	L	mm		
Pitch	S1	mm S2		mm (only GCP4B)
Connecting element	☐ AK ☐ AK10 (SHT)	☐ AKV6/40 ☐ AKV10/40) (SHT)	☐AKV8/40
Radius	R	mm		
Angle	W	0		
Order quantity				
Delivery date				